
Experiments Using Interval Analysis
a Circuit Design Problem

H. R A T S C H E K *
Mathematisches Institut der Universitdt Diisseldorf

and

for Solving

J. R O K N E
Department of Computer Science, The University of Calgary

(Received: 16 April 1992; accepted: 3 March 1993)

Abstract. An already classical attempt at solving a circuit design problem leads to a system of 9
nonlinear equations in 9 variables. The sensitivity of the problem to small perturbations is
extraordinarily high. Since 1974 several investigations have been made into this problem and they hint
at one solution in the restricted domain of the nonnegative reals. The investigations did not give error
estimates nor did they present conclusive evidence that the solution found is the only one in the
domain of the nonnegative reals. Our paper reports on experimental computations which used various
kinds of interval analytic methods while also sometimes reflecting on Wright-Cutteridge's philosophy
and theses. The computations resulted in a guarantee that in the domain of consideration, that is, the
interval [0, 10] for each of the 9 variables, exactly one solution did exist, which was near the solution
known up to now. Finally, our solution could be localized within a parallelpiped with edge lengths
between 10 -6 and 3.2.10 -4.

Key words. Global optimization, least squares problems, global zero search, electrical circuits,
transistor modeling, interval computations, branch-and-bound.

1. Introduction

Based on the fundamental work of Ebers and Moll [4] a bipolar transistor was
modeled by an electrical circuit ([2, 3]) leading to the following set of equations

%(x) = 0 , k = 1 , . . . , 4

/3~(x) = 0 , k = 1 , . . . , 4 (1)

: 0

in the variable x ~ R 9 where

%(x) = (1 - XlXz)X3{e [xS(g'k-~3~x71~ 3-g5kx81~ - 1}

-gs~ + g4~x2 , k = 1 , . . . , 4 ,

*Thanks are due to the Natural Sciences and Engineering Research Council of Canada for supporting
this paper.

Journal of Global Optimization 3: 501-518, 1993.
�9 1993 Kluwer Academic Publishers. Printed in the Netherlands.

502 H. RATSCHEK AND J. ROKNE

[~k(X) = (1 -- X l X 2) X 4 { e [x6(glk-g2k-g3kx710.3+g4kxglO-3)] -- 1}

- g s k x ~ + g41, , k = l , . . . , 4 ,

"y(X) ~-XlX 3 -- X2X 4,

(2)

The numerical constants were given by (k = 1 , . . . , 4):

glk 0.485 0.752 0.869 0.982

g2k 0.369 1.254 0.703 1.455

g3k 5.2095 10.0677 22.9274 20.2153.
ggk 23.3037 101.779 111.461 191.267

gsk 28.5132 111.8467 134.3884 211.4823

These were obtained as a result of laboratory experiments. For the purpose of this
paper, however, the system (1) is assumed to be a test problem to be globally
solved. The presence of the exponential terms with large constants in (2) results
in a very large variation in function and derivative values over moderate input
values and makes the system (1) extremely hard to solve. The problem therefore
appealed to several researchers who tried a variety of approaches for overcoming
the large difficulties encountered.

In 1974, Cutteridge [2] combined local damped Newton-Raphson steps with
the conjugate gradient method and a second-order gradient-descent method with
eigenvalue determination where the two latter methods were applied to the least
squares problem as to minimize

4

f = y 2 + ~ (a 2 +/3~) (3)
k=l

which corresponded to (1). The approximate solution

XA=(0.9 0.45 1.0 2.0 8.0 8.0 5.0 1.0 2.0) r (4)

was found and it was claimed that it was accurate to four figures. Cutteridge
emphasized that only the sophisticated combination of the three methods had led
to a positive result i.e., it did not suffice to only use the first two approaches
mentioned above which was the state of the art for methods for solving such
problems in 1974.

In 1978 Price [18] applied a controlled random search (CRS) procedure to the
least squares problem (3). For a first run, the initial search domain was 0 < x k <
10 for k = 1 , . . . , 9. This first run resulted in 200 points that were clustered around

x ~ 1.0 3.7 3.9 7.1 8.1 0.4 1.9 2.8) r (5)

where f (x (1)) = 22.6. The second run took an initial search domain having the
same volume as the first, but centered on x (1). This resulted in a point x (2) with a

SOLVING A CIRCUIT DESIGN PROBLEM 503

negative component, X~ 2)= --1.75 and a value f(x (2)) = 3.8 x 10 -2. This re-start
strategy was applied several times till after the sixth run no significant improve-
ment was obtained. Thus, an optimum point x (6) was found which had two
negative components,

x(76)=-8.049 and x (96)=-0 .4278

where the function value was f(x (6)) -- 3.9 x 10 -4. Price mentioned that

It is not k n o w n h o w m a n y other global minima the funct ion possesses, but one

occurs close to the po in t x A.

He furthermore stated that it would appear that the sensitivity of the function is
very much greater in the region of the other minima.

In 1980 Dimmer and Cutteridge [3] made an attempt to solve (1) directly with
an elaborate Gauss-Newton variant that used second derivatives. Examinations
of the residuals (3), were incorporated in order to choose suitable correction
vectors for the Gauss-Newton steps. The area of successful starting points
w a s - compared with the previous m e t h o d s - rather small and was obtained by
perturbing x A within a maximum distance of 1.2 w.r.t, each component. This area
is, however, larger than the areas tried with Hartley's method, Marquardt 's
method, and a quasi-Newton method, cf. [3]. The only solution that could be
found was again x A.

The approaches mentioned above only provide some evidence for the fact that
x A is the only solution with positive components. There could be a number of
solutions with positive components to the equations (1) and (3) and no explicit
error estimate of x A has been available so far. The aim of this paper is therefore
to show that

A solution close to x A is the only global solution o f the equations (1) in the
domain [0, 10.0] 9

and to provide a guaranteed error estimate of this solution. Tools of interval
arithmetic, interval analysis and branch-and-bound principles turned out to be an
appropriate means for reaching this goal.

After the above short problem history we should mention the purpose of our
paper. That is, we intend primarily to report on the steps and techniques used to
attain our goal and, secondly

(i) to emphasize the global aspect of the problem, i.e. we have shown with
strictly mathematical methods that a unique solution exists in the domain
[0, 1019,

(ii) to give an approximate value for the solution with guaranteed error-
bounds,

(iii) to hint at the discrepancy between theoretical knowledge and practical
skills. In this matter we were stimulated by the opinion of Wright and

504 H. RATSCHEK AND J. ROKNE

Cutteridge [25] that "mathematical progress has been concentrated away
from applications in favor of studies on theoretical convergence
propert ies. . ." .

(iv) to hint at the differences between local and global approaches where for
the special problem we are reporting we got almost no help from the
literature,

(v) observing at which state of the computation gradient information was
helpful. Here we were again stimulated by Wright and Cutteridge's [25]
discussion about using gradient information or not.

(vi) stating that in the competition between "solving the zero finding problem
directly" versus "solving it via a least-squares approach" the latter was
found to be inferior.

(vii) emphasizing the role of the brain where we were stimulated by Moore's
[16] beautiful sentence that "a computer can be much more powerful than
otherwise if the brain of a mathematician is allowed as one of t h e
'peripherals' " and by Wright and Cutteridge [25] again who said that
"whilst experimental methods are being used it is felt that online working
is the most convenient medium for this type of work". This led to a type
of interactive optimization [we thank one of the anonymous referees for
suggesting this term], which will play a central role in Section 5.

Our strategy for attaining our computational goal was to try available de-
terministic methods which kept the global target of not losing any solution in the
domain [0, 10] 9 then proving existence and uniqueness of a solution after the
solution was localized to a domain of reasonably small width.

Such methods were

(i) interval arithmetical optimization techniques applied to the least-squares
version,

(ii) Newton-like and topological techniques for solving (1),
(iii) subdivision methods for controlling the search for solutions over the global

domain piece by piece.

Since it turned out t h a t - i n contrast to local methods- the treatment of the
least-squares approach was inferior to treating (1) directly and since first and
second order methods could be applied only in a neighborhood of the solution
with radius 10 -2 our main tools were subdivision techniques. The crucial step was
to deemphasize automated subdivision since this process could be improved by
concepts like a most promising component function or a most promising bisection
direction.

Our strategies were far from being perfect. They were however successful,
despite enormous costs. The costs were so high that the computation for this
problem is certainly not competitive, but at this time, we know no other method
which has been applied to this circuit design problem and which has led to the

SOLVING A CIRCUIT DESIGN PROBLEM 505

same guaranteed result of locating exactly one solution in this huge domain,
completed with a reliable error estimate.

The outline of the paper is as follows. Section 2 provides supplementary
interval tools which together with Ratschek and Voller [24] covers the interval
arithmetic background of this paper. In Section 3 two deterministic ways of
solving the problem are compared, i.e., the direct zero search vs. the optimization
approach with the related least squares problem. In order to speed up the interval
computations it is necessary to replace global techniques with local ones as early
in the computation as possible. Section 4 explains why this replacement only
succeeded towards the end of the computations. Section 5 reports on the proper
experimental investigations with subdividing and slicing of the domain and scaling
and weighting of the functions. One of the main experiences was that the local
scaling techniques failed when they were applied to the global problem. Section 6
gives an overview of the progress and of the main stages of the computations.

2. Interval Tools

The tools we used to obtain a truly global perspective on solving (1) and (3) are
based on interval analysis, especially on methods for solving global optimization
and global zero search problems (see, for example, the monographs [1, 22, 17, 5]).
For a first survey of the area and for further references we refer to [23, 24].
General aspects of branch-and-bound principles can be found in [7]. Although
most of the required interval arithmetic background for the paper can be found in
[24] we here emphasize a few points which are beyond the scope of that paper.

For the particular problem dealt with here the interval arithmetic was realized
on a network of Sparc 1 computers. These adhere to the IEEE standards for
floating point arithmetic [8, 9]. These standards allow in particular for 4 rounding
modes which can be controlled by software. One of these modes, truncation, is
used to efficiently implement machine interval arithmetic via outward rounding of
the interval boundaries. Machine interval arithmetic is understood to be any
inclusion isotone implementation of interval arithmetic on a computer. Outward
rounding means to replace intervals A that are not representable on the computer
by larger intervals A M having machine numbers as boundaries. Hence rounding
errors, approximation errors, etc., can be kept under control automatically. Some
of the computations were also executed on Atari computers using PASCAL-SC
[14].

Let I be the set of real compact intervals. The functional X: 1---~ [-1, 1] is
defined as (cf. [20])

fa/b, if [al~lbl, b~0 ,
x([a,b])=Jb/a, if lal~>lbl, a ~ 0 ,

I - 1 , else.

506 H. RATSCHEK AND J. ROKNE

X can be interpreted as a measure for the symmetry of an interval w.r.t, the
zero point. The extremum cases are x(A) = 1 saying that A ~a 0 (as point interval)
is completely asymmetric, and x(A) = - 1 saying that A is completely symmetric.

The range of a function f over a box X ~ 1" is denoted by Dr(x) and the
natural interval extension of f over X by f (X) . The width of an interval or box X
is denoted by w(X).

It is generally believed that computing derivatives is expensive. Using au-
tomatic differentiation, however, time and cost savings can be achieved, cf.
[15, 19]. In the case of the functions we had to deal with, it was, however,
cheapest and best to compute the partial derivatives or their inclusions ana-
lytically, since they could be constructed from expressions the values of which
were already known from the evaluation of the functions themselves.

The interval Newton method and its refinement, the Hansen and Greenberg [6]
realization were the main tools in pursuing our target. Therefore we give a short
overview of the m-dimensional interval Newton algorithm.

Consider the problem of finding an x such that 05(x) = 0 for a given function 05:
S'--> R m, X E I m and assume that both 05(x) and the Jacobian matrix j(x) have
inclusion functions q~(Y) and J(Y) respectively. Then the basic interval Newton
method is defined by the following algorithm:

T H E INTERVAL N E W T O N A L G O R I T H M

1. Set X (~ := X.
2. F o r n = 0 , 1 , 2 , . . .

(a) choose x (n) C X (n),

(b) determine a box Z ("+~) enclosing the solution Y("+') of the linear interval
equation with respect to Y

J(X("))(x(")- Y) = qb(X(")), (6)

that b, Y(n+I) is the set of all vectors y ~ R m for which a real matrix
A E J(X (n)) and a real vector b ~ (b(X (")) exists such that A(x (~)- y)= b
holds (Note: y(,+l) need not be a box),

(c) set X (~+~ := Z ("+1~ N X (").

The following general properties are useful for understanding the application of
the algorithm:

1. If a zero, ~, of 05 exists in X then ~ E X ("~ for all n.
This means that no zero is ever lost! This implies:

2. If X (n~ is empty for some n then 05 has no zeros in X.
3. If Z ~"+1~ is obtained by Gauss-Seidel or by Gauss elimination, then

(a) if Z (n+~) C_X (n~ for some n then 05 has a zero in X (n) C_X,

S O L V I N G A C I R C U I T D E S I G N P R O B L E M 507

(b) if Z (n+I) C_ in tX (n) for some n then ~b has a unique zero in X (int means

the topological interior).
4. Under certain reasonable conditions one obtains

w (X (n+ l)) ~ ol(w(X(n))) 2

for some constant a >~ 0.

In the following we also denote Z (n+I) by N(X (~) and N(X ~ by N(X). These are
the Newton iterates prior to executing the intersection (c).

Interval Newton methods are distinguished by the particular choice of the
superbox Z (n+l). If the choice does not matter or if it is not specified then the
methods are still discussed under the label interval Newton methods. If the choice
is specified then the methods are labelled with the particular way of choosing the
superbox. The Hansen-Greenberg realization, for instance, contains a precondi-
tioning and a sophisticated sequence of Gauss-Seidel and Gauss eliminations
steps for solving (6), see [6, 22].

Both the interval Newton method and the Hansen-Greenberg realization were
implemented for solving the problem (1) respectively (3). The interval Newton
method was mainly used to prove that a solution close to the solution x A was the
only solution to the equation system in [0.0, 10.0] 9 whereas the Hansen-Green-
berg realization has better numerical properties and was able to provide sharper
bounds for the final solution.

3. Optimization Problem versus Zero Search

It was clear from the beginning and from the experiences reported in the
l i terature that no local method would lead to a guaranteed solution of the
problem. Nevertheless, stimulated by the positive results of Cutteridge [2] we first
tried a t reatment of the problem in a least squares setting. The advantages of this
approach seemed to be exclusively restricted to the tricky combination of the local
damped Newton-Raphson steps, the conjugate gradient method and the gra-
dient-descent method as mentioned in Section 1. It even turned out that the first
phase of our computations were without success because of the use of the least
squares approach to the optimization problem! The reason became meanwhile
evident: If we remind that the monotonicity test is the main tool for the global
optimization access, this results mainly in checking that a box Y of the interior of
the domain X 0 = [0, 10] 9 does not contain a global minimizer if

0 ~ F(J)(Y) for one j = 1, . . . , 9

where F (j> is an inclusion function for (Of)/(Oxj). The main tool for the global
zero search is in proving that boxes Y do not contain a zero of the function

508 H. RATSCHEK AND J. ROKNE

g : (O~1""" O~4 /~1""" 84 ~) (7)

via the so-called midpoint or Moore's test, that is simply

0 ~ g j (Y) for o n e j = l , . . . , 9 .

Now, f and g are connected by f = E~= 1 g2 which implies

OXj f= (gl gn) " 0 0
- - �9 �9 �9 g l �9 �9 �9 ~xj g9 �9

Hence, if 0 is not contained in the range of (Of)/(Oxj) over Y, then 0 ~ Dgi(Y) for
some i. This means logically, that if the monotonicity test can be applied
successfully to f (so that Y can be discarded from further processing) then the
same success can be obtained using Moore 's test w. r . t .g . Always! (The converse
holds under certain regularity conditions of the Jacobian matrix of g.)

Further, the computational costs of evaluating is (Of)/(Ox~) essentially higher
than the ones of gi, which gives another reason for preferring the approach with
g. Finally, the excess-widths of (Of(y))/(Oxj) will be larger than the excess-widths
of the g/s since the partial derivatives of f are arithmetical combinations of the
g /s and their partial derivatives. This means that the monotonicity test had less

chance of being successful than the Moore's test.
When we discovered this we continued the computations with the original zero

search problem of g over X 0 = [0, 10] 9.

4. Local Approach versus Global Approach

By the local approach we generally mean the application of the interval Newton
algorithm to a box XCXo, getting a sequence of nested boxes, (x(n)), n = 0,
1 We can use the algorithm directly for the zero search of g in X or for the

search for stationary points of f.
The local approach to a box X C X 0 is successful if

(i) N(X (')) is contained in the interior of X (n) for some n. (In this case a
unique zero or stationary point, x*, lies in X if some mild assumptions for
Z ('+1) hold, and the nested sequence converges to x*.)

(ii) X (') = 0 for some n (which means that X contains no solution and can be

discarded from further processing).

The local approach to a box is not successful if either (i) or (ii) cannot be
reached after a certain number of iterations. This can be made precise when we
use the common termination criteria for interval Newton algorithms. We will not
elaborate further on this here.

By the global approach to X we mean the subdivision of X iteratively into
subboxes Yk keeping track of them till it can be decided whether Yk contains a

S O LVING A C I R C U I T D E S I G N P R O B L E M 509

solution (zero or stationary point) or not. The decisions can follow from Moore ' s

test or monotonici ty test or from a successful local approach to Yk" Since the
numerical costs of the global approach, which has a branching structure, increase
exponential ly w.r.t, the dimension of a problem one will try to replace it by the

local approach whenever possible.
Hence an effective way to solve global problems like ours is to start with the

global approach till the subboxes are sufficiently small so that the local approach

can be applied successfully. In the case of our circuit design p rob lem the analysis
of the problem was very disappointing: The Jacobian matrix of g (and even more
the Hessian of f) was so sensitive that the local approach was only successful
when the boxes Y~ had an edge length not larger than 10 -2.

Let us keep in mind that the cube X 0 contains 10 27 cubes of width 10 -2. Since

the only aid in eliminating larger boxes was finally Moore ' s test, it was extremely
impor tant to develop techniques for an effective subdivision where the aim was to

subdivide in such a manner that larger boxes were thrown out as soon as possible

by Moore ' s test. This is reported in the next section.

5. Subdivision Strategies

We start with a simple example to demonstrate the importance of subdivision

techniques. Assume we want to prove that the function h(x)= x (2 - x) - 5 / 3 has
no zero in the interval V = [0, 1]. Considering the natural interval extension
h(V)=[O, 1][1,2]-5/3=[-5/3, 1/3] is not helpful since OEh(V). But if V is

bisected into two subintervals, V 1 = [0, 1/2] and V 2 = [1/2, 1] then the natural

interval extensions yield h(V1)= [- 5 / 3 , - 2 / 3] and h(V2)= [- 7 / 6 , - 1 / 6] . Since
0 H h(V1) and 0 H h(V2) neither V 1 nor V 2 contain a zero of h due to the inclusion

isotony. Hence V = V 1 U V 2 contains no zero.
We learn f rom this example that the (guaranteed) verification that a box

contains no zero will lead to a partition of the box into subparts, say Yk, k = 1,
2 , which might be proven not to contain a zero. The mathematical back-
ground of this technique is the phenomenon of the excess width tending to zero if
the box width is tending to zero, provided the functions are reasonable and

provided that reasonable inclusion functions are chosen. Hence, a subdivision
strategy will subdivide the area step by step and check whether such a new
subpart contains no zero. If so it can be rejected. Otherwise it will be stored for
further subdivisions. A good subdivision strategy will try to discard large subparts
as early as possible to keep the numerical costs low. Such a strategy can also be
in terpreted as a branch-and-bound method. We had to deal with several subdivi-
sion varieties. Slicing means to cut off a thin piece (called slice) from the current
box at the edge normal to a coordinate direction. Subslicing means to subdivide a
slice into several pieces (subslices) of equal size normal to between one and three
coordinate directions with the intention of getting a larger number of subparts,

510 H. RATSCHEK AND J. ROKNE

usually 10 to 10000. Bisecting or binarily subdividing means to cut any part of the
box into two pieces of equal size normal to a coordinate direction.

Our strategy was

(i) first, to find a slice from the current box that had a reasonable chance of
being rejected by (ii) and (iii),

(ii) second, to find a reasonable subslicing (one to three subslice directions, a
number of parts in each of these directions)

(iii) to apply a simple bisection procedure, cf. the Slice Elimination Algorithm,
to each of the subslices gained by (ii) for a final processing.

Initially, the domain was X0--[0 , 10] 9. Then t h e solution and verification
process was to cut off one slice after the other and to process it using (ii) and (iii)
in order to show that no zero was contained in it and thus reject it. Hence, at each
phase of the solution process a current box was maintained and it was guaranteed
that no solution occurred outside this box in X 0. When a slice had been rejected
the current box was shrunk to reflect the elimination of the slice.

A slice of thickness s in the direction i was a slice, Y, with the i-th coordinate
axis as cutting direction and w(Yi)=s. The typical thickness of a slice in the

cutting direction was 0.1.
The slicing was done until the current box, that contained the solution, had

been shrtmk so far that the faster local methods like interval Newton variants

could be applied.
Let us discuss some details. As the computations progressed one slice was

eliminated at a time. In difficult cases the slices had to be dealt with as a set of
subslices. These were then eliminated one at a time until the original slice had
been eliminated. The slicing process was always done manually whereas the
subslicing process was at various times done both manually and automatically.

It was suspected that there was no other solution except a solution close to x A,
however, as pointed out earlier, the aim was to prove this assertion.

Each subslice, or in a few favorable cases the slice itself, was treated by a
comparatively simple binary subdivision program as described by [10, 11, 22, 13]
and others, as described below. This program was used for both the zero finding
procedure and the global optimization procedure. This program included routines
to either evaluate an inclusion function G of g in (7) or inclusion functions F and
F (i~ of f in (3) and its partial derivatives.

The outline of this program for the version for (1) is given by the

SLICE E L I M I N A T I O N A L G O R I T H M .

1. Set Y : = X, the subslice.
2. Initialize list 4z := (Y).
3. Choose a coordinate direction v (depending on various criteria as discussed

later).
4. Bisect Y normal to direction v, getting boxes V1, V 2 such that Y = V 1 tO V 2.

SOLVING A CIRCUIT DESIGN PROBLEM 511

5. Remove Y from the list-tz.

6. For j = 1 , 2
(a) For i = 1, 2 , . . . , 9

a. Calculate Gi(Vj).
/3. If Gi(Vj) ~3 0 then go to (c).

(b) Enter Vj onto the list at the end of the list.
(c) end (of j-loop).

7. If list is empty then terminate with output:
�9 Subslice has no global min imizer .

8. Denote the last item of the list by Y.
9. Go to 3.

10. End.

For the global optimization version the step 6. (a) was replaced by

(a) I f 0 ~ F(Vj) or 0 f: F(i)(Vj) for some i then go to (c).

In the program step 8 the last item of the list is designated for further bisection.
This means that a box was subdivided repeatedly until it was shown via 6(a)/3. that
the current final list box could have no zero in it (or, equivalently, no minimizer
in the global optimization version). Then the previous box on the list was
considered and so on until the list was exhausted. The strategy of subdividing the
last box on the list first resulted in lists that only grew to moderate lengths with
between 20 and 40 boxes when the computations were successful.

In step 6(a)/3. a box is eliminated if any one component does not contain zero.
This elimination step was done by the Moore-test respectively, the monotonicity
test or local methods.

In this step it is important to be able to compute the inclusion G of g or F of f
as accurately as possible. This was done via the natural interval extensions.
Attempts to use mean value forms or other centered forms (see for example [21])
were not successful mainly due to the nature of the system (1), respectively (3),
since the computation of the natural interval extension of this system resulted in
inclusions that were already close to the range. This meant that the sophisticated
techniques described in [21] were not able to improve on the computations.

The choice of bisection direction in step 3 of the basic program is crucial to the
performance of the elimination process. For instance the Moore-Ske lboe algo-
rithm, as described in [23], bisects the b o x normal to the direction of maximum
box length. This strategy was also tried and the computation time tended to be
excessive.

A large number of experimental programs were tested for the elimination of
slices. Early on it became clear that a strategy had to be developed for the choice
of the next bisection direction in step 3 of the algorithm. Consider for example
eliminating domains that cannot contain a zero of the function

512 H. RATSCHEK AND J. ROKNE

h(x) =x I -]- 101~ - 1, x E X = [0, 10] 2

using the Slice Elimination Algorithm. If X = (X1, X2) it is clear that subdividing
X 1 will have negligible effect on the range of values obtained from the natural
interval extension whereas subdividing X 2 will eventually result in the elimination
of a subbox.

The basic premise was that the coordinate direction of largest width should be
taken for the bisection. This was then modified by the use of weighting factors in a
variety of ways. The different methods for selecting weighting factors were

1. Simple subdivision with no weighting factors where the selection of direction
was only depending on the direction of maximum box width. This was briefly
discussed above.

2. Bisection with selection of coordinate direction only dependent on edge
widths and fixed weighting factors chosen by experience. This approach was
used initially, but it failed for slices closer to x A.

3. Bisection with selection of coordinate direction dependent on edge widths
and dynamically calculated weighting factors derived from various parame-
ters such as the Jacobian matrix. Variations of this technique were used
extensively to eliminate a large number of slices, see also [12].

The final successful subdivision program for discarding slices without solution
that was arrived at at the very end of the whole project consisted of the following
steps:

1. Choose the right slice X by hand. (From experience we knew that, at many
stages of the project a few slices existed which were easier to treat than the
others.)

2. Compute Jg(X)= (Ji])],j=l, that is a natural interval extension of the
Jacobian matrix of g over X, or use the Jacobian matrix of a superbox of X.

3. Select so-called prechosen weighting factors, hi, j = 1 , . . . , 9, for the edge
lengths of the boxes occurring in the Slice Elimination Algorithm by hand.
These factors will influence the bisection direction in Step 3 of the algorithm
and remain fixed during the treatment of X. The selection was done by
experience mainly by considering the edge lengths of X, the entries Jij and
the course of the computational success at adjacent slices.

4. When trying to create a formula for the weighting factors to eliminate the
non-programmable experience part, cf. point 3, we first established the
concept of a most promising component function, say gi. This component
was expected to respond to Moore's test before the other, gj, j ~ i, did.
Then the bisection directions for the algorithm could primarily be adapted to
the needs of gi. The most promising function gi, was deemed to be that
component g j, j = 1 , . . . 9 which maximized

w[gi(S)]/(min{lmin gj(S)l, [max gj(S)[} + e) (8)

S O L V I N G A C I R C U I T D E S I G N P R O B L E M 513

.

.

where E was a small positive constant included to avoid division by zero. The
entries]Jq[, j = 1 , . . . , 9 were then considered as preliminary weighting
factors.
Choose constants ~ 5f, 3- (upper, lower, threshold) to scale the preliminary
weighting factors as explained below. The scaled weighting factors are
denoted by o~, j = 1 , . . . ,9.
The final weighting factors for the boxes Y occurring in the alg. were the
numbers ,~j~, j = 1 , . . . , 9. The weighted widths for such boxes were defined
as

ww(Yj) = Aj~w(Yj), j = 1 , . . . , 9.

The index v in step 3 of the alg. was then chosen so that v maximized
ww(Yj) subject to j = 1 , . . . , 9.

7. In order to make the state of the current working area such as a subslice or a
subbox of the alg. (in contrast to the current slice) more relevant we
frequently split up the computation of the different weighting factors. The
prechosen factors were derived from the Jacobian matrix over the slice X,
cf. point 2, and remained fixed during the whole elimination procedure for
this slice. The same held for the constants OR, 5r and ~-. The preliminary and
the scaled weighting factors were, however, computed either for each
subslice or sometimes for each box occurring in the algorithm. This updating
procedure diminished the number of iterations essentially but, especially in
the second mentioned case, the numerical costs for computing Jg(X) for
each box Y were too high.

Let us supplement a few details of these points: Formula (8) expressed our
thought that it was reasonable to choose that component which had one end-point
of gj(X) closest to zero relative to the size of gj(X). In this manner it could be
argued that after a series of bisections the most promising component function
would have a good chance to reject a great portion of the subboxes generated by
the algorithm.

In point 5 the Jacobian entries were scaled depending on the parameters OR, 5f
and g- in the following manner: Suppose the index of the most promising
component function was i and N = maxq= 1 9lJql. Let cj = X(Jij). Then the scaled
weighting factors were defined as

o~ = IJijl(1 + cj)oR/~, j = 1 , . . . , 9 .

Values of ,~ < 3- were however excluded and replaced by 5q. The parameter OR
was set to 200 by experience. This scaling guaranteed that the coordinate
directions with absolutely large Jacobian entries would be favored first. A
parameter value ~ 200 corresponded roughly to 7 or 8 bisections in one
direction if the values of 5f and J- were about 1. The parameters 5~ and ~-

514 H. R A T S C H E K A N D J. R O K N E

ensured that if the choice of the most promising component function was wrong
then all was not lost. The reason is that the less favored directions will also be
considered after 7 to 8 bisections (also depending on the edge widths).

We also had to struggle with the observation that the algorithm was very
sensitive to changes in the parameters 0//, 5g and 3-. Typically, with one choice of
parameters a given slice would be eliminated in 50,000 iterations whereas a
slightly different choice would require 10,000,000 iterations for the same slice and
in extreme cases the iterations did not terminate within a reasonable time.

An experiment was made varying the parameter ~ for the choice of ~ and J-
as described by the following table

5~ 3-

A 1.0 1.0

B 1.0 1.5

C 1.0 2.0

D 5.0 1.0

With the box [5.0, 10.0] x [0.0, 10.0] s and the input parameters given in the table
the algorithm gave the results plotted in Figure 1 which showed the number of
bisections needed till the box had been eliminated.

In difficult cases where there was no guidance as to a choice of parameters and
bisection directions we bisected a sample box in each direction and compared the

26Q

24G

220

20C

18c

16C

14G

12C

10C

80' I I
40 ,50 60

, /
i

t f /
. J

I I I I I '~

70 80 90 100 11 0 120

Fig. 1. Plot of number of iterations depending on ~ .

S O L V I N G A C I R C U I T D E S I G N P R O B L E M 515

18 box halves w.r.t, largest range reduction. This gave us an idea of which
bisection directions could lead to success and installed the prechosen weighting
factors and ~ 5g, 3- accordingly.

Other unsuccessful cases could be dealt with by varying the formulas for picking
out the most promising component function. Such formulas replacing (8) were,
for instance,

2 / w j - 1 / a ~ i f aj, w j r or 2 / ~ - V ~ / a ~ i f a~, w j r

with wj = w[gj(X)] and aj = max{lu]: u ~ g i (X)) .
Even though our subdivision strategy was very cumbersome, it had the

advantage of working which finally led to success.

6. The Course of the Computations

In this section we describe the global order of the numerical steps of the whole
problem solving enriched by some further computational details.

A. Variable elimination. In order to reduce the dimension of the problem,
Cutteridge [2] used the ninth equation,

3"(X) ~-" X l X 3 - - X 2 X 4 = 0

to eliminate the variable x 4 so that only eight equations in eight variables were to
be solved. A direct translation of such a substitution into interval arithmetic
would not be wise because of the increase of width of the eliminated interval
variable. Hence we kept nine equations and nine-variables. But, whenever a
subslice or subbox Y in Slice Elimination Algorithm was going to be used, parts
of Y~, i = 1 , . . . , 4 were removed that could not satisfy the equation 3' = 0.
Moore 's test or further bisections were then applied to Y' instead of Y where

Y~=Yj for j : 5 , . . . , 9 ,

Y'4= (YI Y3/Y2) N Y4 ,

Y'3 = (Y2Y'4/Y~) 71 Y3 ,

Y2 = (Y~ Y'3/Y'4) A Y2 ,

v'l = (v ;Y; /Y;) n Y, .

These equations occur if variable eliminations based on xlx 3 - x 2 x 4 ~ " 0 would
have been executed. That is, no variable is really eliminated but those box
shrinkings are considered which would have been caused by the eliminations.

This procedure had to be modified when division through zero intervals
occurred. We drop the details. If any of the intersections were empty then the box
or subslice could be eliminated since it could not contain a zero.

516 H. RATSCHEK AND J. ROKNE

B. Existence and uniqueness test. In order to localize the suspected zero and to
prove that no second zero is available in X0, we had to make a lot of experiments
with boxes around or near X A applying the interval Newton algorithm in order to
find out boxes in which just one zero exists. To be consistent with the existing
interval arithmetical theory it was necessary to use some specific methods for
determining the interval hull Zn+ 1 of the system (6), for instance, the interval
Gauss algorithm (cf. [1]). We finally were successful with the box

x,=

"0.8990229964 0.9009769558"
0.4490229785 0.4509769976
0.9990229606 1.000979900
1.999019980 2.000979900
7.999019622 8.000979423
7.999019622 8.000979423
4.999019622 5.000979900
0.9990229606 1.000979900
1.999019980 2.000979900

and got

N(X~) =

"0.899999499320
0.449942409992
0.999914228916
1.999960184097
7.999773979187
7.999220371246
4.999865055084
0.999968469142
1.999950766563

0.900000214576"
0.450029253959
1.000097632408
2.000184535980
8.000171661376
8.000111579895
5.000213146209
1.000006437301
2.000164270401,

Since N(X1) is contained in the interior of)(1 existence as well as uniqueness of
a solution in X t was proven. Hence our efforts were concentrated to prove that no
fur ther zero existed in X 0.

C. Rejection of XoLg I. We wanted to show that XokX I contained no zeros of g.
Then, together with B., it was proven that X o contains exactly one zero of g, and
that it lied in N(X1).

After having finished B. and having condemned the least-squares approach, we
proceeded as follows:

1. Set X : = X 0.
2. Choose an edge slice Y of X with YkX x ~ 0 for getting processed.
3. Choose between the global approach (slice elimination algorithm with

Moore ' s test) or the local approach (interval Newton method and H a n s e n -
Greenberg variant) or combinations for the elimination of Y.

4. In case of the global approach, choose the subslicing and bisecting mode for

Y (Section 5).
5. If within a prescribed amount of steps it can be proven that Y contains no

zero, then

SOLVING A CIRCUIT DESIGN PROBLEM 517

(a) Set X : = Xkint Y, where int Y denotes the interior of Y,

(b) If XkX 1 ~ 0 then go to 2
else STOP (since the aim is reached).

6. Go to 4. or 3. or 2. modifying or rejecting the former parameters or choices
(that means, try it again!).

When we finally reached the STOP of step 5, the box X 0 was shrunk to

"0.899999
0.449962
0.999955
2.00001

X* = 7.99987
7.99953
4.99994
0.999978

~2.00000

0.900000"
0.450004
1.00005
2.00009
8.00008 C X , .
7.99985
5.00011
0.999997
2.00010

Hence it was proven that the unique zero of g in X 0 lies in the box

X* A N(Xx) .

(9)

D. Computational costs. One word has to be said about the number of function
evaluations (f.e.) we needed. There is only one comment: There were too many
f.e. , in order to be proud of reaching the goal and to be really successful, since it
was in the order of billions. Typically the bisection limit, often reached, was
5 • 10 6 for each slice. However , it was an experimental computation where
number of f.e. is a dubious concept: If a computation had to be executed, we
started with a certain strategy and needed, say n 1 f.e. Then we changed the
parameter , observed from the beginning that the number would be too high, and
stopped with/12 f.e. The third time we needed/13 "~/1: f.e. The three tests were
helpful for getting good parameters for the processing of the next box. But, which
is the real number of f.e. to be reported in this part of the computation? Is it/11 or

/13, or/1: + n 3 or/11 +/12 +/13 ? Each of these answers had its right, also/13, since
everybody could repeat the computation with /13 f.e. since the necessary
parameters are then already known.

7. Conclusion

In this paper a numerically very difficult system of equations arising from a circuit
modeling problem has been solved in the global domain [0, 10] 9. Success was
achieved using a combination of interval methods, subdivision and branch-and-
bound strategies where the choice of bisection direction was made based on a
scaling strategy developed as the computations progressed. Although the compu-
tation was successful it was extremely costly in terms of machine cycles. It is
therefore recommended that such methods for solving unstable systems should be

518 H. R A T S C H E K A N D J. R O K N E

further investigated with the aim of reducing the computations. These methods
would be based on improved selection criteria for the subdivision process.

References

1. Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations, Academic Press,
New York.

2. Cutteridge, O. P. D. (1974), Powerful 2-part program for solution of nonlinear simultaneous
equations, Electronics Letters 10, 182-184.

3. Dimmer, P. R. and Cutteridge, O. P. D. (1980), Second derivative Gauss-Newton-based method
for solving nonlinear simultaneous equations, IEE Proc. 127, 278-283

4. Ebers, J. J. and Moll, J. L. (1954), Large-scale behavior of junction transistors, lEE Proc. 42,
1761-1772.

5. Hansen, E. R. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.
6. Hansen, E. R. and Greenberg, R. I. (1983), An interval Newton method, Applied Math. and

Comp. 12, 89-98.
7. Horst, R. and Tuy, H. (1990), Global Optimization, Springer-Verlag, Berlin.
8. IEEE (1985), IEEE standard for binary floating-point arithmetic. IEEE Standard 754-1985,

IEEE, New York.
9. IEEE (1987), IEEE standard for radix-independent floating-point arithmetic. IEEE Standard

854-1987, IEEE, New York.
10. Kearfott, B. (1979), An efficient degree-computation method for a generalized method of

bisection, Numerische Mathematik 32, 109-127.
11. Kearfott, B. (1987), Some tests of generalized bisection, ACM Trans. Math. Software 13,

197-220.
12. Kearfott, B. (1987), Abstract generalized bisection and a cost bound, Math. of Comput. 49,

187-202.
13. Kearfott, B. (1990), INTBIS, a portable interval Newton/bisection package, ACM. Trans. Math.

Software 16, 152-157.
14. Kulisch, U. (ed.) (1986), PASCAL-SC Manual and System Disks, Wiley-Teubner Series in

Computer Science, Stuttgart.
15. Moore, R. E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.
16. Moore, R. E. (1990), Interval tools for computer aided proofs in analysis, in Computer Aided

Proofs in Analysis, ed. K. R. Meyer and D. S. Schmidt, IMA Series, vol. 28, Springer-Verlag,
Berlin.

17. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press,
Cambridge.

18. Price, W. L. (1978), A controlled random search procedure for global optimization, in Towards
Global Optimization 2, ed. L. C. W. Dixon and G. P. Szeg6, North-Holland, Amsterdam, pp.
71-84.

19. Rall, L. B. (1981), Automatic Differentiation, Springer-Verlag, Berlin.
20. Ratschek, H. (1975), Nichtnumerische Aspekte der Intervallarithmetik, in Interval Mathematics,

ed. by K. Nickel, Springer-Verlag, Berlin, pp. 48-74.
21. Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Ellis

Horwood, Chichester.
22. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis

Horwood, Chichester.
23. Ratschek, H. and Rokne, J. (1991), Interval tools for global optimization, Computers and

Mathematics with Applications 21, 41-50.
24. Ratschek, H. and Voller, R. (1991), What can interval analysis do for global optimization?

Journal of Global Optimization 9, 111-130.
25. Wright, D. J. and Cutteridge, O. P. D. (1976), Applied optimization and circuit design, Computer

Aided Design 8, 70-76.

